Binary symmetric channel

content

anne a shina mara a da baka anna a 1997 an an San Anna anna an San Anna an San Anna an San Anna an San Anna an

- Introduction
 - Entropy and some related properties
- Source coding
- Channel coding
- Multi-user models
- Constraint sequence
- Applications to cryptography

This lecture

andra anna a an Article Inconstruction and an Article Andra and a statements and and the statements and an and

Some models
Channel capacity
<u>converse</u>

some channel models

transition probabilities

memoryless:

- output at time i depends only on input at time i
- input and output alphabet finite

channel capacity:

I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) (Shannon 1948)

notes: capacity depends on input probabilities because the transition probabilites are fixed

channel model: binary symmetric channel

E is the binary error sequence s.t. P(1) = 1-P(0) = p X is the binary information sequence Y is the binary output sequence

<u>Random</u> error channel; outputs independent Error Source $\rightarrow P(0) = 1 - P(1);$

Burst error channel; outputs dependent

Interleaving:

n Banner i Kalender von der Stelle Banne 🖉 Stelle 2000 werden er der Berlin der Banner 😫 bereit 😫 bereit Stelle Banner bereiten er der Banner Banner bereiten er der Banner bereiten er der Banner bereiten bere

"random error"

Note: interleaving brings encoding and decoding delay

Homework: compare the block and convolutional interleaving w.r.t. delay

Interleaving: block

Channel models are difficult to derive:

- burst definition?
- random and burst errors ?

for practical reasons: convert burst into random error

De-Interleaving: block

Interleaving: convolutional

and a state of the second state in the second state and the state of the second state in the second state of the

input sequence 0 input sequence 1 \longrightarrow delay of b elements •••• input sequence m-1 \longrightarrow delay of (m-1)b elements \rightarrow

Class A Middleton channel model

Example: Middleton's class A

Pr{ $\sigma = \sigma(k)$ } = Q(k), k = 0,1, · · ·

$$\sigma(\mathbf{k}) \coloneqq \left(\frac{\mathbf{k}\sigma_{\mathrm{I}}^{2} / \mathbf{A} + \sigma_{\mathrm{G}}^{2}}{\sigma_{\mathrm{I}}^{2} + \sigma_{\mathrm{G}}^{2}}\right)^{1/2} \qquad \mathbf{Q}(\mathbf{k}) \coloneqq \frac{\mathbf{e}^{-\mathbf{A}}\mathbf{A}^{\mathbf{k}}}{\mathbf{k}!}$$

A is the impulsive index

 σ_{I}^{2} and σ_{G}^{2} are the impulsive and Gaussian noise power

Example of parameters

in the second second

Middleton's class A= 1; E = σ = 1; σ_I / σ_G = 10⁻ 1.5

k	Q(k)	<pre>p(k) (= transition probability)</pre>
0	0.36	0.00
1	0.37	0.16
2	0.19	0.24
3	0.06	0.28
verage p ⁴ = 0.12 9;⁰²Capacity (B35C) = 0.457		

Example of parameters

en de la company de la comp

Example of parameters

anter a company a constant a la constant a co

channel capacity: the BSC

I(X;Y) = H(Y) - H(Y|X)the maximum of H(Y) = 1since Y is binary H(Y|X) = h(p)= P(X=0)h(p) + P(X=1)h(p)

Conclusion: the capacity for the BSC $C_{BSC} = 1 - h(p)$ Homework: draw C_{BSC} , what happens for $p > \frac{1}{2}$

channel capacity: the Z-channel

Application in optical communications

 $P(X=0) = P_0$

 $H(Y) = h(P_0 + p(1 - P_0))$

 $H(Y|X) = (1 - P_0) h(p)$

For capacity, maximize I(X;Y) over P₀

channel capacity: the erasure channel

Application: cdma detection

I(X;Y) = H(X) - H(X|Y) $H(X) = h(P_0)$ $H(X|Y) = e h(P_0)$ Thus $C_{erasure} = 1 - e$

(check!, draw and compare with BSC and Z)

channel models: general diagram

Input alphabet $X = \{x_1, x_2, ..., x_n\}$ Output alphabet $Y = \{y_1, y_2, ..., y_m\}$ $P_{j|i} = P_{Y|X}(y_j|x_i)$

In general: calculating capacity needs more theory

clue:

I(X;Y) is convex \cap in the input probabilities

i.e. finding a maximum is simple

Definition:

The rate R of a code is the ratio $\frac{k}{n}$, where

k is the number of information bits transmitted

in n channel uses

Shannon showed that: :

for $R \leq C$

encoding methods exist

with decoding error probability > 0

There are 2^k code words of length n

Channel capacity: sketch of proof for the BSC

Code: 2^k binary codewords where $p(0) = P(1) = \frac{1}{2}$ Channel errors: $P(0 \rightarrow 1) = P(1 \rightarrow 0) = p$ i.e. # error sequences $\approx 2^{nh(p)}$ Decoder: search around received sequence for codeword with \approx np differences

Channel capacity: decoding error probability

- 1. For t errors: $|t/n-p| \ge C$ \rightarrow 0 for $n \rightarrow \infty$ (law of large numbers)
- 2. > 1 code word in region (codewords random)

$$P(>1) \approx (2^{k} - 1) \frac{2^{nh(p)}}{2^{n}} \rightarrow 0$$

for
$$R = \frac{k}{n} < 1 - h(p)$$

and
$$n \rightarrow \infty$$

Channel capacity: converse

in de la companya de

For R > C the decoding error probability > 0

Converse: For a discrete memory less channel

n Manager and Andrew Market States of The 2019 All Constraints and the second states of the States of States and Andrew Manager States

$$I(X^{n};Y^{n}) = H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i} \mid X_{i}) \le \sum_{i=1}^{n} H(Y_{i}) - \sum_{i=1}^{n} H(Y_{i} \mid X_{i}) = \sum_{i=1}^{n} I(X_{i};Y_{i}) \le nC$$

Source generates one out of 2^k equiprobable messages

Let Pe = probability that $m' \neq m$

CONVERSE R := k/n

$$k = H(M) = I(M;Y^{n}) + H(M|Y^{n})$$

$$\stackrel{X^{n} \text{ is a function of } M}{\leq} I - C n/k - 1/k \leq Pe$$

$$\leq I(X^{n};Y^{n}) + I + k Pe$$

$$\leq nC + I + k Pe$$

Appendix:

Assume: binary sequence P(0) = 1 - P(1) = 1-p t is the # of 1's in the sequence Then n → ∞ , ε > 0 Weak law of large numbers Probability (|t/n -p| > ε) → 0

i.e. we expect with high probability pn 1's

Appendix:

and a state of the second state in the second state of the

Consequence:

1. $n(p-\varepsilon) < t < n(p+\varepsilon)$ with high probability 2. $\log_2 \sum_{n(p-\varepsilon)}^{n(p+\varepsilon)} {n \choose t} \approx \log_2(2n\varepsilon {n \choose pn}) \approx \log_2 2n\varepsilon + \log_2 2^{nh(p)}$ 3. $\frac{1}{n} \log_2 2n\varepsilon + \frac{1}{n} \log_2 2^{nh(p)} \rightarrow h(p)$ 4. A sequence in this set has probability $\approx 2^{-nh(p)}$